YK151 S - 100β ELISA

FOR LABORATORY USE ONLY

<Distributed by>

Kasumigaseki place, 3-6-7, Kasumigaseki, Chiyoda-ku, Tokyo 100-0013 Japan

https://research.sceti.co.jp/en e-mail:export@sceti.co.jp

Contents

Ι.	Introduction	2
Π.	Characteristics	2-3
ш.	Composition	3
IV.	Method	4-6
v .	Notes	6-7
VI.	Performance Characteristics	7-10
VII.	Stability and Storage	11
VIII.	References	11-12

- Please read all the package insert carefully before beginning the assay -

YK151 S-100β ELISA Kit

I. Introduction

S-100 protein has a molecular weight of 21K Dalton and is consist of two subunits, α chain and β chain. It is known that combination of these subunits is different from the location in human body. S-100 β is localized in glial cell and schwann cell, S-100 α in glial cell and S-100 α in striated muscle, heart and kidney.

It was reported that the concentration of $S-100\beta$ in cerebrospinal fluid was an useful marker for diagnosis of the degree of brain damage after head injury, cerebral hemorrhage and ischemic stroke. Recently another report described that the increasing of $S-100\beta$ in blood correlated to the degree of brain damage after cerebral ischemia, infarction, hemorrhage and severe head injury.

YK151 S-100B ELISA Kit

- ▼ The assay kit can measure rat, mouse and human S-100β within the range of 0.078 5 ng/mL
- \blacksquare The assay is completed within 3+1+1h. + 0.5h.
- ▼ With one assay kit, 40 samples can be measured in duplicate
- Test sample: rat, mouse and human plasma, rat and human CSF, culture medium supernatant Sample volume: 20 μL
- ▼ The 96-wells plate in kit is consisted by 8-wells strips, and the strips can be used separately
- ▼ Precision and reproducibility Intra-assay CV (%) 2.99 – 4.82 Inter-assay CV (%) 4.82 – 9.20
- ▼ Stability and storage
 Store all of the components at 2-8°C.
 This kit is stable under the condition for 12 months from the date of manufacturing.
 The expiry date is stated on the package

Contents

- 1) Antibody coated plate
- 2) S-100β standard
- 3) Labeled antibody solution
- 4) SA-HRP solution
- 5) Substrate buffer
- 6) OPD tablet
- 7) Stopping solution
- 8) Buffer solution
- 9) Washing solution (Concentrated)
- 10) Adhesive foil

I . Characteristics

This ELISA kit is used for quantitative determination of mouse/rat/human S-100 β in their plasma and culture medium supernatant, and rat/human cerebrospinal fluid (CSF) sample. The kit is characterized by sensitive quantification and high specificity. In addition, it is not influenced by other components in plasma sample and needlessness of sample pretreatment.

<Specificity>

The ELISA kit shows 0.2% cross reactivity to bovine S-100 $\alpha\alpha$.

<Assay principle>

This ELISA kit for determination of S-100 β in plasma and CSF sample is based on a sandwich enzyme immunoassay. To the wells of plate coated with highly purified antibody against S-100 β , standards or samples are added for the 1st step immunoreaction. After the 1st step incubation and plate washing, labeled antibody solution (biotinylated rabbit anti bovine S-100 β polyclonal antibody) is added as the 2nd step to form antibody - antigen - labeled antibody complex on the surface of the wells. After the 2nd step incubation and rinsing out excess labeled antibody, horseradish peroxidase (HRP) labeled streptoavidin (SA) is added for binding to labeled antibody. Finally, HRP enzyme activity is determined by o-phenylenediamine dihydrochloride (OPD) and the concentration of S-100 β is calculated.

Ⅲ. Composition

	Component	Form	Quantity	Main Ingredient
1.	Antibody coated plate	Microtiterplate	1 plate (96 wells)	Rabbit anti bovine S-100β
2.	S-100ß Standard	Lyophilized	1 vial (5 ng)	Bovine S-100β
3.	Labeled antibody solution	Liquid	1 bottle (11 mL)	Biotinylated rabbit anti bovine S-100β antibody
4.	SA-HRP solution	Liquid	1 bottle (11 mL)	HRP labeled streptoavidin
5.	Substrate buffer	Liquid	1 bottle (26 mL)	Citrate buffer containing 0.015% hydrogen peroxide
6.	OPD tablet	Tablet	2 tablets	o-Phenylenediamine dihydrochloride
7.	Stopping solution	Liquid	1 bottle (11 mL)	1M H ₂ SO ₄
8.	Buffer solution	Liquid	1 bottle (25 mL)	Phosphate buffer
9.	Washing solution (Concentrated)	Liquid	1 bottle (50 mL)	Concentrated saline
10.	Adhesive foil		4 pieces	

W. Method

<Equipment required>

- 1. Micropipettes, multi-channel pipettes for 8 wells or 12 wells and their tips
- 2. Photometer for microtiter plate (plate reader), which can read the extinction 2.5 at 490 nm
- 3. Microtiter plate shaker
- 4. Glass test tubes for preparation of standard solution
- 5. Washing device for microtiter plate, dispenser with aspiration system
- 6. Graduated cylinder (1,000 mL)
- 7. Distilled water or deionized water
- <Preparation of CSF(cerebrospinal fluid) sample>

CSF sample should be diluted 1.5 times in buffer solution (i.e., $40~\mu L$ CSF sample in $20~\mu L$ buffer solution). After finish the assay, the measured value should be multiplied 1.5-fold to give the real value of CSF sample.

The dilution is not needed for plasma and culture medium supernatant sample. Plasma and culture medium supernatant sample can be applied into well of microtiter plate directly.

<Preparatory work>

1. Preparation of the standards:

Reconstitute the S-100 β standard (lyophilized 5ng/vial) with 1 mL of buffer solution, which affords 5 ng/mL standard solution. The reconstituted standard solution (0.2 mL) is diluted with 0.2 mL of buffer solution which yields 2.5 ng/mL standard solution. Repeat the dilution procedure to make each of 1.25 , 0.625, 0.313, 0.156 and 0.078 ng/mL standard solutions. Buffer solution itself is used as 0 pg/mL.

2. Preparation of the substrate solution:

Resolve one OPD tablet with 12 mL of substrate buffer. It should be prepared immediately before use.

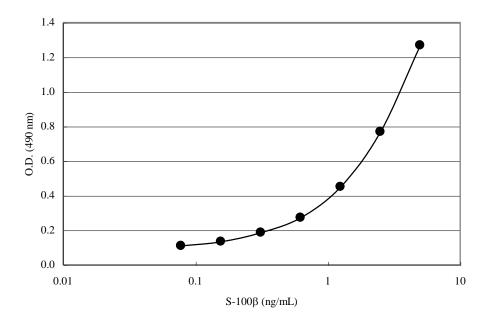
3. Preparation of the washing solution:

Dilute 50 mL of the washing solution (concentrated) to 1,000 mL with distilled or deionized

water.

- 4. Other reagents are ready for use.
- <Procedure>
- 1. Bring all the reagents to room temperature (20-30°C) before starting assay.
- 2. Fill 0.30 mL/well of washing solution into the wells and aspirate the washing solution in the wells. Repeat this washing procedure further twice (total 3 times). Finally, invert the plate and tap it onto an absorbent surface, such as paper toweling, to ensure blotting free of most residual washing solution.
- 3. Fill 100 μL of buffer solution into all of the wells first, then introduce 20 μL each of standard solution (0, 0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5 ng/mL) or samples into the wells. The total pipetting time of standard solutions and samples for a whole plate should not exceed 30 minutes.
- 4. Cover the plate with adhesive foil and incubate it at room temperature (20-30°C) for 3 hours. During the incubation, the plate should be shaken with a microtiter plate shaker. (approximately 100 rpm).
- 5. Take off the adhesive foil, aspirate and wash the wells 4 times with approximate 0.3 mL/well of washing solution. Finally, invert the plate and tap it onto an absorbent surface, such as paper toweling, to ensure blotting free of most residual washing solution.
- 6. Add 100 µL of labeled antibody solution into the wells.
- 7. Cover the plate with adhesive foil and incubate it at room temperature (20-30°C) for 1 hour. During the incubation, the plate should be shaken with a microtiter plate shaker. (approximately 100 rpm).
- 8. Take off the adhesive foil, aspirate and wash the wells 4 times with approximate 0.3 mL/well of washing solution. Finally, invert the plate and tap it onto an absorbent surface, such as paper toweling, to ensure blotting free of most residual washing solution.
- 9. Add 100 μL of SA-HRP solution into the wells.
- 10. Cover with the adhesive foil and incubate the plate at room temperature (20-30°C) for 1 hour. During the incubation, the plate should be shaken with microtiter plate shaker. (approximately 100 rpm).
- 11. Resolve one OPD tablet with 12 mL of substrate buffer. It should be prepare immediately before use.

- 12. Take off the adhesive foil, aspirate and wash the wells 5 times with approximate 0.3 mL/well of washing solution. Finally, invert the plate and tap it onto an absorbent surface, such as paper toweling, to ensure blotting free of most residual washing solution.
- 13. Add 100 μL of the substrate solution containing OPD into the wells, cover the plate with adhesive foil and keep it still for 30 minutes at room temperature (20-30°C) for color reaction.
- 14. Add 100 μL of the stopping solution into the wells to stop color reaction.
- 15. Read the optical absorbance of the wells at 490 nm. The dose-response curve of this assay fits best to a 4 (or 5)-parameter logistic equation. The results of unknown samples can be calculated with any computer program having a 4 (or 5)-parameter logistic function. Otherwise calculate mean absorbance values of wells containing standards and plot a standard curve on semi logarithmic graph paper (abscissa: concentration of standard; ordinate: absorbance values). Use the average absorbance of each sample to determine the corresponding value by simple interpolation from this standard curve.


V. Notes

- EDTA-2Na (1 mg/mL) additive blood collection tube is recommended for the plasma sample collection. The blood or CSF sample should be centrifuged and collected the supernatant for assay. It is strongly recommended that plasma or CSF sample should be used as soon as possible after collection. If the samples are tested later, they should be divided into test tubes in small amount and frozen at or below -30°C and thawing before assay. Avoid repeated freezing and thawing of samples.
- 2. S-100β standard, substrate solution should be prepared immediately before use. This kit can be used dividedly in strips of the plate. In such case, the rest of reconstituted standard in glass vials or tubes should be stored at 4°C (stable for 2 weeks). It is also possible to keep standard stable for 4 weeks if standard be stored at or below –30°C.
- 3. The total pipetting time of standard solutions and samples for a whole plate should not exceed 30 minutes.
- 4. During storage of washing solution (concentrated) at 2-8°C, precipitates may be observed, however they will dissolve when diluted.
- 5. Pipetting operations may affect the precision of the assay. Pipette standard solutions or samples into each well of plate precisely. In addition, use clean test tubes or vessels in assay and use new tip for each standard or sample to avoid cross contamination.
- 6. When concentration of S-100β in samples is expected to exceed 5 ng/mL, the sample needs to be

- diluted with buffer solution to a proper concentration.
- 7. During incubation except the color reaction, the plate should be shaken gently with a microtiter plate shaker to promote immunoreaction. (approximately 100 rpm).
- 8. Perform all the determination in duplicate.
- 9. Read optical absorbance of solution in the wells immediately after stopping color reaction.
- 10. To quantitate accurately, always run a standard curve when testing samples.
- 11. Protect reagents from strong light (e.g. direct sunlight) during storage and assay.
- 12. Satisfactory performance of the assay is guaranteed only when reagents in combination pack with identical lot number are used.

VI. Performance Characteristics

Typical standard curve

<Analytical recovery>

<Human plasma>

<Human plasma A>

Citatian plasma 112			
Added Bovine S-100β (ng/mL)	Observed (ng/mL)	Expected (ng/mL)	Recovery (%)
0.00	0.21		
0.10	0.30	0.31	96.77
0.50	0.67	0.71	94.37

2.00	1.91	2.21	86.43
<human b="" plasma=""></human>			
Added Bovine S-100β	Observed	Expected	Recovery
(ng/mL)	(ng/mL)	(ng/mL)	(%)
0.00	0.18		
0.10	0.27	0.28	96.43
0.50	0.61	0.68	89.71
2.00	1.65	2.18	75.69
<rat plasma=""></rat>			
<rat a="" plasma=""></rat>			
Added Bovine S-100β	Observed	Expected	Recovery
(ng/mL)	(ng/mL)	(ng/mL)	(%)
0.00	0.55		
0.10	0.62	0.65	95.39
0.50	0.89	1.05	84.76
2.00	1.99	2.55	78.04
<rat b="" plasma=""> Added Bovine S-100β</rat>	Observed	Expected	Recovery
(ng/mL)	(ng/mL)	(ng/mL)	(%)
0.00	1.03	()	(,,,
0.10	1.11	1.13	98.23
0.50	1.38	1.53	90.20
2.00	2.27	3.03	74.92
	2.21	3.03	14.72
<rat c="" plasma=""></rat>			
Added Bovine S-100β	Observed	Expected	Recovery
(ng/mL)	(ng/mL)	(ng/mL)	(%)
0.00	0.45		
0.10	0.53	0.55	96.36
0.50	0.79	0.95	83.16
2.00	1.78	2.45	72.65
<mouse plasma=""></mouse>			
<mouse a="" plasma=""></mouse>			
Added Bovine S-100β	Observed	Expected	Recovery
(ng/mL)	(ng/mL)	(ng/mL)	(%)
0.00	0.08	/	` '
0.10	0.16	0.18	88.89
0.50	0.53	0.58	91.38
2.00	1.81	2.08	87.02
<mouse b="" plasma=""></mouse>	1.01	2.00	37.02
Added Bovine S-100β	Observed	Expected	Recovery
(ng/mL)	(ng/mL)	(ng/mL)	(%)
0.00	0.11	(116/11112)	(/0)
0.10	0.11	0.21	100.00
0.50	0.54	0.21	88.53
0.30	0.34	0.01	88.33

2.00	1.72	2.11	81.52
<human csf=""></human>			

<Human CSF>

Ac	lded Bovine S-100β (ng/mL)	Observed (ng/mL)	Expected (ng/mL)	Recovery (%)
	0.00	0.14		
	0.10	0.24	0.24	100.00
	0.50	0.55	0.64	85.94
	2.00	1.87	2.14	87.38

<Rat CSF>

<Rat CSF A>

Added Bovine S-100β (ng/mL)	Observed (ng/mL)	Expected (ng/mL)	Recovery (%)
0.00	0.22		
0.10	0.30	0.32	93.75
0.50	0.59	0.72	81.94
2.00	1.94	2.22	87.39

<Rat CSF B>

That Col By			
Added Bovine S-100β	Observed	Expected	Recovery
(ng/mL)	(ng/mL)	(ng/mL)	(%)
0.00	0.16		
0.10	0.25	0.26	96.15
0.50	0.56	0.66	84.85
2.00	1.86	2.16	86.11

<Dilution test>

<Human plasma>

Human plasma	Dilution ratio	Observed	Estimated	Recovery
		(ng/mL)	(ng/mL)	(%)
Human plasma A	x 1.0	0.171		
	x 1.5	0.122	0.114	107.02
	x 2.0	0.088	0.086	102.33
Human plasma B	x 1.0	0.362		
	x 1.5	0.260	0.241	107.88
	x 2.0	0.187	0.181	103.31

9

<Rat plasma>

Rat plasma	Dilution ratio	Observed (ng/mL)	Estimated (ng/mL)	Recovery (%)
Rat plasma A	x 1.0	0.642		
	x 2.0	0.271	0.321	84.42
	x 4.0	0.110	0.161	68.32
Rat plasma B	x 1.0	1.211		
	x 2.0	0.524	0.606	86.47
	x 4.0	0.220	0.303	72.61
Rat plasma C	x 1.0	0.529		
	x 2.0	0.236	0.265	89.06
	x 4.0	0.094	0.132	71.21

<Mouse plasma>

Mouse plasma	Dilution ratio	Observed	Estimated	Recovery
		(ng/mL)	(ng/mL)	(%)
Mouse plsama A	x 1.0	0.104		
	x 1.5	0.062	0.069	89.86
	x 2.0	0.042	0.054	77.78
Mouse plasma B	x 1.0	0.154		
	x 1.5	0.098	0.102	96.08
	x 2.0	0.068	0.077	88.31

<Human CSF>

Human CSF	Dilution ratio	Observed	Estimated	Recovery
		(ng/mL)	(ng/mL)	(%)
Human CSF	x 1.0	0.207		
	x 1.5	0.116	0.138	84.06
	x 2.0	0.088	0.104	84.62

<Rat CSF>

Rat CSF	Dilution ratio	Observed	Estimated	Recovery
		(ng/mL)	(ng/mL)	(%)
Rat CSF A	x 1.0	0.402		
	x 2.0	0.191	0.201	95.03
	x 4.0	0.105	0.101	103.96
Rat CSF B	x 1.0	4.379		
	x 1.5	3.096	2.919	106.06
	x 2.0	2.101	2.190	95.94

Precision and reproducibility

• Intra-assay CV(%) 2.99-4.82

• Inter-assay CV(%) 4.82-9.20

VI. Stability and Storage

<Storage> Store all of the components at 2-8°C.

<Shelf life> This kit is stable under the condition for 12 months from the date of

manufacturing.

The expiry date is stated on the package.

<Package> For 96 tests per one kit.

WI. References

1. Ingebrigtsen T, Romner B, Kongstad P, and Langbakk B (1995). Increased serum concentration of protein S-100 after minor head injury: a biochemical serum marker with prognostic value? *Psychiatry*, 103-104.

- 2. Missler U, Wiesmann M, Friedrich C, and Kaps M (1997). S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic Stroke. *Stroke* **28**, 1956 -1960.
- 3. Buttner T, Weyees S, Postert T, Sprengelmeyer R, and Kuhu W (1997).S-100 protein: Serum Marker of local brain damage after ischemic territorial MCA infarction. *Stroke* **28**, 1961-1965.
- 4. Wiesmann M, Missler U, Hagenstrom H, and Gottmann D (1997). S-100 protein plasma level after aneurysmal subarachnoid Haemorrhage. *Acta Neurochir (Wien)* **139**, 1155-1160.
- 5. Woertgen CH, Rothoerl RD, Holzschuh M, Metz CH, and Brawanski A (1997). Comparison of serial S-100 and NSE serum measurements after severe head injury. *Acta Neurochir (Wien)* **139**, 1161-1165.
- 6. Mckeating E G, Andrews P J D, and mascia L (1998). Relationship of neuro specific enolase and protein S-100 concentration in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury. *Acta Neurochir* (Suppl) 7, 117-119.
- 7. Raave A, Grolms C, Keller M, Dohnert J, Sorge O, and Seifer V (1998). Correlation of computed tomography findings and serum brain damage markers following severe head injury. *Acta Neurochir (Wien)* **140**, 787-792.
- 8. Kanai H, Marushima H, Kimura N, Iwaki T, Saito M, Maehashi H, Shimizu K, Muto M, Masaki T, Ohkawa K, Yokoyama K, Nakayama M, Harada T, Hano H, Hataba Y, Fukuda T, Nakamura M, Totsuka N, Ishikawa S, Unemura Y, Ishii Y, Yanaga K, and Matsuura T (2007). Extracorporeal bioartificial liver using the radial-flow bioreactor in treatment of fatal experimental hepatic encephalopathy. *Artif Organs.* 31, 148-51.

- 9. TAKEDA M, YAGUCHI A, YUZAWA J, YAMADA S, and NAGAI A(2008). Serum S-100β Protein as a Biomarker for Brain Damage in Patients with Encephalopathy. *J Tokyo Wom Med Univ* **78**, 454-460
- 10. Kaneda K, Fujita M, Yamashita S, Kaneko T, Kawamura Y, Izumi T, Tsuruta R, Kasaoka S, and Maekawa T (2010). Prognostic value of biochemical markers of brain damage and oxidative stress in post-surgical aneurysmal subarachnoid hemorrhage patients. *Brain Res Bull.* 81, 173-7.
- 11. Honda M, Tsuruta R, Kaneko T, Kasaoka S, Yagi T, Todani M, Fujita M, Izumi T, and Maekawa T (2010). Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific *enolase.J Trauma*. **69**, 104-9.

<Manufacturer> Yanaihara Institute Inc. 2480-1 Awakura, Fujinomiya-shi Shizuoka, Japan 418-0011

TEL: +81-544-22-2771 FAX: +81-544-22-2770

Website: http://www.yanaihara.co.jp E-mail: ask@yanaihara.co.jp

Update at July 13, 2017