

Buccutite[™] FOL, maleimide [FOLM]

Catalog number: 5356 Unit size: 2 umoles

Product Details	
Storage Conditions	Freeze (<-15 °C), Minimize light exposure
Expiration Date	12 months upon receiving
Chemical Properties	
Appearance	Solid
Molecular Weight	523.63
Soluble In	DMSO

Applications

Buccutite[™] crosslinking technology provides the most convenient and effective crosslinking method to link two biomolecules with a high conjugation yield. The method uses one pair of crosslinkers: Buccutite[™] MTA and Buccutite[™] FOL. MTA is added to one molecule, while FOL is added to another molecule. The cross-linking reaction is initiated by mixing Molecule-1-Buccutite [™] MTA and Molecule-2-Buccutite [™] FOL under neutral conditions. Many of our customer have requested us to offer the stand-alone Buccutite[™] MTA and Buccutite[™] FOL reagents to expand the application of Buccutite[™] crosslinking technology. Buccutite[™] FOL maleimide (FOLM) can be used the same way as the widely used SMCC for crosslinking proteins. One end of the FOLM reacts (via maleimide) with thiols (-SH) of cysteineS found in the reduced antibodies (by TCEP or DTT) to give FOL-modified reduced antibodies. Buccutite[™] crosslinking reaction occurs under extremely mild and neutral conditions without any catalyst required while the SMCC crosslinking requires high concentration of proteins. In addition, SMCC-modified protein is extremely unstable and often self-reactive since proteins often contain both amine and thiol groups that cause significant amount of homo-crosslinking. Buccutite[™] crosslinking is robust and efficient.